Article
Article name Parameters of the Mantle Thermochemical Plume as Formation Factors of the Tarim Large Igneous Province
Authors Kirdyashkin A.A. doctor of geology and mineralogy sciences, aak@igm.nsc.ru;
Distanov V.. senior researcher, dist@igm.nsc.ru
Banushkina S.. research assistant, banushkinasv@igm.nsc.ru
Golitsyna Z.. research assistant, zoe.zhurko@igm.nsc.ru
Bibliographic description Kirdyashkin A. A., Distanov V. E., Banushkina S. V., Golitsyna Z. F. Parameters of the Mantle Thermochemical Plume as Formation Factors of the Tarim Large Igneous Province // Transbaikal State University Journal. 2025. Vol. 31, no. 4. P. 27–39. DOI: 10.21209/2227-9245-2025-31-4-27-39
Category Earth and Environmental Sciences
DOI 551.2:551.14:532.5
DOI 10.21209/2227-9245-2025-31-4-27-39
Article type Original article
Annotation In the article, the main parameters of the Tarim plume are found for the available geological and geophysical data on the eruption duration and the eruption volume. The relevance of the study is dictated by the need to determine the possible structure and main parameters of the mantle plume responsible for the formation of the Tarim large igneous province (Northwest China). The object of the study is a mantle thermochemical plume responsible for the formation of the Tarim large igneous province. The aim of the study is to determine the thermal and hydrodynamic structure of the Tarim mantle thermochemical plume and to determine the main formation factors of the Tarim large igneous province. The method of thermophysical modeling is applied to clarify the thermal and hydrodynamic structure of the Tarim plume and determine its main parameters. A diagram of a plume head development along a “refractory” layer in the lithosphere is shown on the basis of results of laboratory (physical) modeling and theoretical analysis. The heat from the plume conduit is transferred to the “refractory” layer thereby ensuring the melting of the lithospheric horizon along its base As a result of this melting, a mushroom-shaped plume head is formed. The formulae for the thermal power and the plume conduit diameter of the plume conduit are presented. The thermal balance in the plume is presented and the formula for the diameter of the plume head of the plume is found based on it. The relation for the plume head diameter is found. The model of the mantle thermochemical plume responsible for the LIP formation presented in this article is used to determine the main parameters of the mantle plume responsible for the formation of the Tarim LIP. The parameters of this plume are determined based on our laboratory and theoretical modeling using the available geological and geophysical data on the magmatic area, the volume of magmatism and the eruption duration of the basalt melt of the Tarim LIP plume. The main parameters of the Tarim plume are as follows based on the laboratory and theoretical modeling : the thermal power N = (1.7–6.8) · 1011 W, the relative thermal power Ka = 16.3–48.8 and the plume conduit diameter d = 43–87 km. It is shown that these values correspond to the parameters of a high-power plume responsible for LIP formation. Based on the results obtained the position of the Tarim plume is shown on the diagram of geodynamic regimes of plumes. The time and the ascent velocity of the secondary plume in the “refractory” layer of the lithosphere are estimated. The values of the dynamic viscosity of the “refractory” layer have been found, at which the head area of the Tarim plume is reached, corresponding to the available geological estimates of the TLIP flood-basalt area.
Key words mantle thermochemical plume, plume conduit, plume head, free convective flows, melt, Tarim Large ignous province, thermal power, diameter of the conduit, secondary plume, “refractory” layer, diagram of regimes, eruption volume, dynamic viscosity
Article information
References 1. Dobretsov NL, Kirdyashkin AA, Kirdyashkin AG, Vernikovsky VA., Gladkov IN. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos. 2008;100(1-4):66-92. DOI: 10.1016/j.lithos.2007.06.025. EDN: LLJHSN 2. Kirdyashkin AG., Kirdyashkin AA. Parameters of plumes of North Asia. Russian Geology and Geophysics. 2016;57(11):1535-1550. DOI: 10.1016/j.rgg.2016.10.002. EDN: XFRNFB 3. Liu Y, Lü X, Wua C, Hu X, Duan Z, Deng G (et al). The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: As suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geology Reviews. 2016;72:538-545. DOI: 10.1016/j.oregeorev.2015.07.020. EDN: VFEWQV 4. Borisenko AS, Sotnikov VI, Izokh AE, Polyakov GV, Obolensky AA. Permo-triassic mineralization in Asia and its relation with plume magmatism. Geologiya i Geofizika. 2006;47(1):166-182. EDN: NDLLGZ. (In Russian) 5. Dobretsov NL. Early paleozoic tectonics and geodynamics of central Asia: role of mantle plumes. Geologiya i Geofizika. 2011;52(12):1957-1973. EDN: ONZTLH. (In Russian) 6. Bi Y, Chen H, Hanski E, Kuritani T, Wu HX, Zhang FQ. Hydrous mantle plume promoted the generation of continental flood basalts in the Tarim Large Igneous Province. Scientific Reports. 2024;14(1):9514. DOI: 10.1038/s41598-024-60213-4. EDN: BRJANR 7. Li W, Wang X, Liang X, Zuo S, Li S, Qu Ch (et al). Heterogeneous Tarim cratonic crust induced by a mantle plume and its effect on later tectonic evolution based on multi-frequency receiver functions imaging. Journal of Geophysical Research: Solid Earth. 2024;129(11). DOI: 10.1029/2024JB029579. EDN: YVCRYE 8. Sun J, Liang T, Liu X, Zhang X, Liu B, Quan G. Triassic thermal pulse of Tarim mantle plume: evidence from geochronology, geochemistry, and Nd isotopes of the mafic dikes from the Halaqi Area, Xinjiang, China. Minerals. 2024;14(3):283. DOI: 10.3390/min14030283. EDN: WPLANF 9. Xiang X, Chen H, Chen L, Xu X, Lin X, Li Z. Plume-modified lithosphere mantle controlled the Cenozoic sediment thickness in the Tarim Basin. Geophysical Research Letters. 2024;51(2). DOI: 10.1029/2023GL106203. EDN: CIOUMC 10. Xu X, Chen H, Zuza AV, Yin A, Yu P, Lin X. Phanerozoic cratonization by plume welding. Geology. 2023;51(2):209-214. DOI: 10.1130/G50615.1. EDN: XMQTMQ 11. Yang SH, Zhou MF, Wang CY, Jiang C. Emplacement and ore potential of the Permian Pobei maficultramafic complex, NE Tarim, NW China. Journal of Asian Earth Sciences. 2024;263:105992. DOI: 10.1016/j. jseaes.2023.105992. EDN: CPIOCE 12. Yu H, Chen H, Cao H, Said N, Huang C, Ma Z (et al). Advances in magmatic Ni-Cu-(PGE) sulphide deposits and their constraints on Neoproterozoic tectonic settings of China. Geological Journal. 2024;60(4):807- 823. DOI: 10.1002/gj.5105. EDN: IWJFYG 13. Zhang S, Zeng R, Duan S, Pan J, Liang D, Yan J (et al). Mineralogical characterization and provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province. Minerals. 2025;15(8):884. DOI: 10.3390/ min15080884. EDN: IZZOQZ 14. Blacker KJ, Reichow MK, Wang Z, Zhang Z. New estimates on the basalt volume of the Tarim (not so large) Igneous Province, NW China. Journal of Geophysical Research: Solid Earth. 2021;126(12). DOI: 10.1029/2021JB022061. EDN: BIZNQR 15. Yang SF, Chen HL, Li ZL, Li YQ, Li DX, Meng LF (et al). Early Permian Tarim large igneous province in northwest China. Science China: Earth Sciences. 2013;56(12):2015-2026. DOI: 10.1007/s11430-013-4653-y. EDN: SPOUHP 16. Zhang R, Cheng Zh, Zhang Zh, Chen Zh, Ernst R, Santosh M. Formation of Tarim Large Igneous Province and strengthened lithosphere revealed through machine learning. Journal of Geophysical Research: Solid Earth. 2023;128(1). DOI: 10.1029/2022JB025772. EDN: NJGOIC 17. Bo H, Zhang Z, Cheng Z, Ren K, Santosh M. Pre-eruptive evolution and timescales of silicic volcanism in the Tarim Large Igneous Province. Journal of Geophysical Research: Solid Earth. 2023;128(1). DOI: 10.1029/2022JB025016. EDN: TBOUUW 18. Pan Y, Wang ZХ, Pan M. Redefined distribution of the Permian volcanic rocks in the Tarim Basin: Based on logging and seismic data. Applied Mechanics and Materials. 2014;448-453:3723-3727. 19. Usui Y, Tian W. Paleomagnetic directional groups and paleointensity from the flood basalt in the Tarim large igneous province: implications for eruption frequency. Earth Planets Space. 2017;69(14). DOI: 10.1186/ s40623-016-0595-x5 20. Xu YG, Wei X, Luo ZY, Liu HQ, Cao J. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos. 2014;204:20-35. DOI: 10.1016/j.lithos.2014.02.015. EDN: USURSB 21. Li YQ, Li ZL, Yang SF, Chen HL, Tang ZL, Zou SY. Origin of the Early Permian zircons in Keping basalts and magma evolution of the Tarim Large Igneous Province (northwestern China). Lithos. 2014;204:47- 58. DOI: 10.1016/j.lithos.2014.05.021. EDN: UOETJX22 22. Zhong YT, Luo ZY, Liu HQ, He B, Huang XL, Xu YG. Constraining the duration of the Tarim flood basalts (northwestern China): CA-TIMS zircon U-Pb dating of tuffs. Geological Society of America Bulletin. 2022;134(1-2):325-334. DOI: 10.1130/B36053.1. EDN: EXMCKY 23. Gladkov IN, Distanov VE, Kirdyashkin AA, Kirdyashkin AG. Stability of a melt/solid interface with reference to a plume channel. Fluid Dynamics. 2012;47(4):433-447. DOI: 10.1134/S0015462812040023. EDN: RHWKDZ 24. Kirdyashkin AA, Kirdyashkin AG, Distanov VE, Gladkov IN. Geodynamic regimes of thermochemical mantle plumes. Russian Geology and Geophysics. 2016;57(6):858-867. DOI: 10.1016/j.rgg.2016.05.003. EDN: WVPSCL 25. Shangguan S, Peate IU, Tian W, Xu Y. Re-evaluating the geochronology of the Permian Tarim magmatic province: implications for temporal evolution of magmatism. Journal of the Geological Society. 2016;173(1):228-239. DOI: 10.1144/jgs2014-114 26. Li YQ, Li ZL, Chen HL, Yang SF, Sun YL, Santosh M (et al). Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China: Implications for the evolution of the Tarim Large Igneous Province. Chemical Geology. 2012;328:278-289. DOI: 10.1016/j. chemgeo.2012.03.007. EDN: RHWKKN 27. Tian W, Guan P, Chen M, Yu H, Zhu W, Campbell IH (et al). The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology. 2010;160(3):407-425. DOI: 10.1007/s00410-009-0485-3. EDN: MZDLOT
Full articleParameters of the Mantle Thermochemical Plume as Formation Factors of the Tarim Large Igneous Province