| References |
1. Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Ruosteenoja K, Vihma T, Laaksonen A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ. 2022;(3). DOI: 10.1038/s43247-022-00498-3. EDN: PRZRHP
2. Obu J, Westermann S, Barboux C, Bartsch A, Delaloye R, Grosse G, Wiesmann A. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Active Layer Thickness for the Northern Hemisphere. NERC EDS Centre for Environmental Data Analysis. 2021;(3.0). DOI: 10.5285/67a3f8c8dc914ef99f7f08eb0d997e23
3. Miner KR, D’Andrilli J, Mackelprang R, Edwards A, Malaska MJ, Waldrop MP, Miller CE. Emergent biogeochemical risks from Arctic permafrost degradation. Nat Clim Chang. 2021;(11):809–819. DOI: 10.1038/s41558-021-01162-y. EDN: UAQRST
4. Walter Leal Filho, Maria Alzira Pimenta Dinis, Gustavo J. Nagy, Umberto Fracassi. On the (melting) rocks: Climate change and the global issue of permafrost depletion. Science of the Total Environment. 2023;166615(2023). DOI: 10.1016/j.scitotenv.2023.166615
5. Han L, Menzel L. Hydrological variability in southern Siberia and the role of permafrost degradation. Journal of Hydrology. 2022;127203(2022). DOI: 10.1016/j.jhydrol.2021.127203. EDN: VHBILD
6. Malkova G, Drozdov D, Vasiliev A, Gravis A, Korostelev Y, Nikitin K, Orekhov P, Ponomareva O, Romanovsky V, Sadurtdinov M, Skvortsov A, Sudakova M, Tsarev A, Kraev G, Shein A. Spatial and temporal variability of permafrost in the western part of the Russian Arctic. Energies. 2022;15(7):311. DOI: 10.3390/en15072311. EDN: RDGTTA
7. Stetyukha VA. Improving heat and Moisture Transfer Models in Assessing the Impact of Mining Operations on Rocks in the Conditions of Southern Transbaikalia. Mining Information and Analytical Bulletin. 2004;(10):71‒74. EDN: IFAMVX (In Russian).
8. Hjort J, Streletskiy D, Dor´e G, Wu Q, Bjella K, Luoto M. Impacts of permafrost degradation on infrastructure. Nat Rev Earth Environ. 2022;(3):24–38. DOI: 10.1038/s43017-021-00247-8. EDN: JSXFHX
9. Yakubovich A, Yakubovich I. Using the Response Surface to Assess the Reliability of the Russian Cryolithozone Road Network in a Warming Climate. Advances in Intelligent Systems and Computing. 2021;(1258):486–495. DOI: 10.1007/978-3-030-57450-5_42. EDN: ZCNOJI
10. Larsen JN, Ingimundarson JH, Schweitzer P, Gartler S, Meyer A, Abass K, Rautio A, Timlin U, Doloisio N, Vanderlinden JP, Vullierme M, Ingeman-Nielsen T, Scheer J, Ungsberg L. Thawing permafrost in Arctic coastal communities: a framework for studying risks from climate change. Sustainability. 2021;(13). DOI: 10.3390/su13052651. EDN: ZLKKZE
11. Langer M, von Deimling TS, Westermann S, Rolph R, Rutte R, Antonova S, Rachold V, Schultz M, Oehme A, Grosse G. Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination. Nat Commun. 2023;(14):1721. DOI: 10.1038/s41467-023-37276-4. EDN: CCGXKZ
12. Brushkov AV, Vasina AI, Kiyashko NV, Mel’nikov MI, Osokin AA, Chernyak YuV, Falaleeva AA. Global Warming And Permafrost Condition In Russia. Vestnik Moskovskogo Universiteta. Seriâ 4: Geologiâ. 2024;(6):4–11. DOI: 10.55959/MSU0579-9406-4-2024-63-6-4-11. EDN: WPQJZW (In Russian).
13. Mikheev PN. On Approaches to Taking into Account the Risks of Changing Climatic Conditions when Planning and Implementing Oil and Gas Projects. Issues of Risk Analysis. 2021;18(1):52–65. DOI: 10.32686/1812-5220-2021-18-1-52-65. EDN: PKPNML (In Russian).
14. Shesternev DM, Shesternev DD. Heaving of Сoarse-Grained Rocks of the Chita-Ingodinskaya Depression in Connection with Global Warming. Kriosfera Zemli. 2007;11(4):80–92. EDN: KUAGDP (In Russian).
15. Salnikov PI. Stability of building foundations on frozen soils in the Southern Transbaikal Region. Yakutsk: Permafrost Institute SB RAS; 1996. 208 p. EDN: ZKADAV (In Russian).
16. Verkhoturov AG. The Effects of Permafrost Soils Degradation on Terrestrial Ecosystems of Trans-Baikal. In: Proceedings of the International scientific and practical conference on engineering permafrost science, dedicated to the twentieth anniversary of the establishment of “Fundamentstroyarkos” LLC. Tyumen: City-Press Printing House; 2011. P. 114–116. Available from: https://www.npo-fsa.ru/sites/default/files/sbornik_mezhdunarodnoy_nauchno-prakticheskoy_ konferencii_po_ inzhenernomu_merzlotovedeniyu_7-10_noyabrya_2011.pdf (accessed 23.03.2024). EDN: PHONWX (In Russian).
17. Langer M, Nitzbon J, Groenke B, Assmann LM, Schneider von Deimling T, Stuenzi SM, Westermann S. The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the cryogridlite permafrost model. The Cryosphere. 2024(18):363–385. DOI: 10.5194/tc-18-363-2024. EDN: LZUIIR
18. Ekici A, Beer C, Hagemann S, Boike J, Langer M, Hauck C. Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model // Geoscientific Model Development. 2014. No. 7. P. 631–647. DOI: 10.5194/gmd-7-631-2014. EDN: SPBUWX
19. Steinert NJ, Cuesta-Valero FJ, García-Pereira F, de Vrese P, Melo Aguilar CA, García-Bustamante E, Jungclaus J, González-Rouco JF. Underestimated land heat uptake alters the global energy distribution in CMIP6 climate models. Geophysical Research Letters. 2024;(51). DOI: 10.1029/2023GL107613. EDN: QKOBIT
20. Painter SL, Coon ET, Khattak AJ, Jastrow JD. Drying of tundra landscapes will limit subsidence-induced acceleration of permafrost thaw. Proceedings of the National Academy of Sciences. 2023;(120). DOI: 10.1073/pnas.2212171120. EDN: YOEIBM
21. de Vrese P, Georgievski G, Gonzalez Rouco JF, Notz D, Stacke T, Steinert NJ, Wilkenskjeld S, Brovkinet V. Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate. The Cryosphere. 2023;(17):2095–2118. DOI: 10.5194/tc-17-2095-2023. EDN: RNNFBC
22. Alekseev AG, Sazonov PM, Ryabukhina VG. Methodology For Forecasting The Values Of Seasonal Thaw Layer In Permafrost Areas Considering Their Degradation Under Climate Warming. Bulletin of the Scientific Research Center Construction. 2024;(43):81–92. DOI: 10.37538/2224-9494-2024-4(43)-81-92. EDN: PJNFYA (In Russian).
23. Ivanov VA, Rozhin II. Modeling Of Degradation Of Permafrost In The Process Of Climate Warming In Central Yakutia For The Coming 300 Years. Modern science-intensive technologies. 2021;(10):41–47. Available from: https://top-technologies.ru/ru/article/view?id=38852 (accessed 05.03.2025). DOI: 10.17513/snt.38852. EDN: DPXBCP (In Russian).
24. Shesternyov DM, Vasyutich LA. Thermal Pollution of Cryolitozone Geological Environment of the Urban Areas of Zabaikalie (On the Example of Yhe Town Chita). Transbaikal State University Journal. 2012;(1):43–51. Available from: https://cyberleninka.ru/article/n/teplovoe-zagryaznenie-geologicheskoy-sredy-kriolitozony-urbanizirovannyh-territoriy-zabaykalya-na-primere-g-chita (accessed 23.03.2024). EDN: OORFSV (In Russian).
25. Samokhvalov ND, Borisik AL, Streletskaya ID, Teterin AV. Current State of Permafrost Conditions in Transbaikalia Region Based on Geophysical Data. Relief and Quaternary Deposits of the Arctic, Subarctic and North-West Russia. 2024;(11):571–580. DOI: 10.24412/2687-1092-2024-11-571-580. EDN: MSVOKG (In Russian).
26. Kondratyev SV. Deformations of the Trans-Baikal part of the federal highway “Amur” Chita ‒ Khabarovsk on sections of icy permafrost soils: causes and solutions: cand. sci. diss.: 25.00.08. Chita; 2016. 225 p. Available from: https://www.crust.irk.ru/images/upload/newsfull166/948.pdf. (accessed 25.03.2025). EDN: AKEHJH (In Russian).
|