References |
1. Bogatyreva A. A., Vinogradova A. R., Tikhomirova S. A. Investigation of the Transfer Learning ability of convolutional neural networks trained on Imagenet. International Journal of Applied and Fundamental Research, no. 7, pp. 106–111, 2019. (In Rus.)
2. Galanov A. E., Selyukova G. P. Neural networks and neural technologies // Actual issues of science and economics: new challenges and solutions: sat. art. LIII International Student Scientific and Practical Conference. Tyumen: State Agrarian University of the Northern Urals, 2019. P. 399–405. (In Rus.)
3. Kochev D. V. Geoecological mapping of buildings in flood-prone areas of the cities of Shilka and Nerchinsk of the Trans-Baikal Territory using the NDBI spectral index and a neural network. Transbaikal State University Journal, vol. 30, no. 1, pp. 28–39, 2024. (In Rus.)
4. Kurganovich K. A., Shalikovsky A. V., Bosov M. A., Kochev D. V. Application of artificial intelligence algorithms for flood-prone areas control. Water Management of Russia: Problems, Technologies, Management, no. 3, pp. 6–24, 2021. (In Rus.)
5. Senichev A. V., Novikova A. I., Vasiliev P. V. Comparison of deep learning with traditional methods of computer vision in problems of defect identification. Young Researcher of the Don, no. 4, P. 64–67, 2020. (In Rus.)
6. Solodukhin A. A. Zabaikalsky Krai – flood-prone region. Technosphere safety of the Baikal region: collection of articles international scientific and practical conference. Chita: ZabGU, 2017. Pp. 24–32. (In Rus.)
7. Shalikovsky A. V. Fundamentals of rational use of flood-prone territories: abstract. ... Doctor of Geographical Sciences: 25.00.36. Chita, 2004. 40 p. (In Rus.)
8. Girshick R., Donahue J., Darrell T., Malik J. Region-based convolutional networks for accurate object detection and semantic segmentation. IEEE Trans Pattern Anal Mach Intell, no. 38, pp. 142–158, 2016. (In Eng.)
9. Goodfellow I., Bengio Y., Courville A. Deep learning. Cambridge (MA): MIT Press, 2016. (In Eng.)
10. Graves A., Liwicki M., Fernandez S., Bertolami R., Bunke H., Schmidhuber J. A. Novel connectionist system for improved unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell, no. 31, pp. 855–868, 2009. (In Eng.)
11. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. (In Eng.)
12. Hinton G. E., Osindero S., Teh Y. W. A Fast-learning algorithm for deep belief nets. Neural Comput, no. 18, pp. 1527–1554, 2006. (In Eng.)
13. Hu W., Huang Y., Wei L., Zhang F., Li H. Deep convolutional neural networks for hyperspectral image classification. J Sens, no. 2, pp. 3–12, 2015. (In Eng.)
14. Krizhevsky A., Sutskever I., Hinton G. E. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25. 2012. Web. 12.05.2024. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neuralnetworks.pdf. (In Eng.)
15. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 2015. Web. 12.05.2024. https://arxiv.org/pdf/1409.1556.pdf. (In Eng.)
|