References |
1. Belanovich D. M. Before the approval of the methodology, NDV standards cannot be applied. The best
available technologies of water supply and sanitation, no. 3–4, pp. 8–10, 2015. (In Rus.).
2. Bobylev S. N., Solovyova S. V. Circular economy and its indicators for Russia. The world of the new
economy, vol. 14, no. 2, pp. 63–72, 2020. DOI: 10.26794/2220-6469-2020-14-2-63-72. (In Rus.).
3. Bolgov M. V., Venitsianov E. V., Shashkov S. N. On the problems of the regulatory and methodological
framework development for water resources management and water use in the Russian Federation. Water
management of Russia: problems, technologies, management, no. 2, pp. 8–21, 2021. DOI: 10.35567/1999-
4508-2021-2-1. (In Rus.).
4. Danilov-Danilyan V. I., Venitsianov E. V., Belyaev S. D. Some problems of reducing pollution of water
bodies from diffuse sources. Water Resources, vol. 47, no. 5, pp. 493–502, 2020.
5. Kuznetsov N. G., Tyaglov S. G., Ponomareva M. A., Rodionova N. D. The role of the best available
technologies in the development of the innovative potential of the region. Economics and Management: theory
and practice, vol. 6, no. 3, pp. 59–64, 2020. (In Rus.).
6. The best available technologies. Prevention and control of industrial pollution. Stage 3: Assessment
of the effectiveness of BAT policies / Office for Environment, Health and Safety of the OECD Directorate for
the Environment; translated from English. Edited by D. O. Skobelev. Web. 21.12.2022. https://www.oecd.org/
chemicalsafety/risk-management/measuring-the-effectiveness-of-best-available-techniques-policies-russian.
pdf. (In Rus.).
7. Novoselov A. L., Novoselova I. Yu., Zheltenkov A. V. Model of transition of industrial enterprises to the
best available technologies. Bulletin of the Moscow State Regional University, no. 2, pp. 115–125, 2018. DOI:
10.18384/2310-6646-2018-2-115-125. (In Rus.).
8. Pryazhinskaya V. G., Yaroshevsky D. M. Mathematical models of management of concentrated discharges
of pollutants. Mathematical modeling in water use management. Yekaterinburg: Aqua-press, 2001. (In
Rus.).
9. Rikun A. D., Chernyaev A. M., Shiryak I. M. Methods of mathematical modeling in optimization of water
management systems of industrial regions. Moscow: Nauka, 1991. (In Rus.).
10. Skobelev D. O. Industrial policy of increasing resource efficiency and achieving sustainable development
goals. Journal of New Economics, vol. 21, no. 4, pp. 153–173, 2020. DOI: 10.29141/2658-5081-2020-
21-4-8. (In Rus.).
11. Tyaglov S. G., Voskresova G. N. Features of technology definition as NDT: Russian and foreign experience.
Bulletin of Economic Regulation (Issues of Economic regulation), no. 2, pp. 96–112, 2019. (In Rus.).
12. Shumilova L. V., Khatkova A. N., Razmakhnin K. K., Cherkasov V. G. Strategies of rational and integrated
use of mineral raw materials based on the best available technologies and assessment of the life cycle
of mining waste. Bulletin of the Transbaikal State University, vol. 27, no. 4, pp. 32–44, 2021. (In Rus.).
13. Adnan M. S., Roslen H., Samsuri S. Application of the total maximum daily load (TMDL) An approach
to water quality assessment for the Batu Pahat River. Environment of the Earth. The science, vol. 1022,
pp. 120–174, 2022. DOI: 10.1088/1755-1315/1022/1/012 074. (In Eng.).
14. Chung E. S., Kim K. T., Lee K. S., Burian S. J. Inclusion of uncertainty and distribution of objective load
reduction in the overall process of maximum daily load in Korea. KSCE Journal of Civil Engineering, vol. 15,
no. 7, pp. 1289–1297, 2011. DOI: 10.1007/c12205-011-1166-0. (In Eng.).
15. Council Directive 96/61/EC of 24 September 1996 on integrated pollution prevention and control. Web.
24.09.2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31996L0061. (In Eng.).
16. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial
emissions (integrated pollution prevention and control). Web. 24.09.2022. http://eur-lex.europa.eu/legalcontent/
EN/TXT/?uri=CELEX:32010L0075. (In Eng.).
17. Overview of total maximum daily loads (TMDLs). Text: electronic // US Environmental Protection Agency.
Web. 04.02.2022. https://www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls. (In Eng.).
18. Schellenberg T., Subramanian V., Ganeshan G., etc. Wastewater discharge standards in the changing
context of urban sustainability – the case of India. Front. Environmental science, vol. 8, no. 30, 2020.
Web. 21.12.2022. https://www.researchgate.net/publication/340 725101_Wastewater_Discharge_Standards_
in_the_Evolving_Context_of_Urban_Sustainability-The_Case_of_India. DOI: 10.3389/fenvs.2020.00030. (In
Eng.).
19. Summary of the Clean Water Act. Laws and Regulations. Environmental Protection Agency. Web.
18.09.2022. http://www2.epa.gov/laws-regulations/summary-clean-water-act. (In Eng.).
20. Undeman E., Josefsson H., Agerstrand M. The potential of the EU Water Framework Directive for
reducing pollutant emissions is limited: a case study on specific pollutants of river basins in Swedish environmental
permitting processes. Environmental Sciences Europe, 2022, vol. 34, no. 123. Web. 21.12.2022.
https://www.researchgate.net/publication/366 679664_The_potential_of_the_EU_Water_Framework_Directive_
for_reducing_emissions_of_pollutants_is_limited_a_case_study_on_river_basin_specific_pollutants_in_
Swedish_environmental_permitting_processes. DOI: 10.1186/s12302-022-00705-0. (In Eng.).
21. Wang K., B. J. Development of TMDL for rivers flowing into Taihu Lake, China, using expressions of
variable daily load. Stoch. Environment. Relative risk. Evaluation, vol. 30, pp. 911–921, 2016. DOI: 10.1007/
s00477-015-1076-7. (In Eng.).
22. Yuan Yu., Li Yu. Systems of permits for the discharge of pollutants into water in the United States and
China: comparison using the reference method. Beijing Law Review, vol. 11, pp. 579–601, 2020. DOI: 10.4236/
blr.2020.112 035. (In Eng.). |